Navy Medicine in Araby (Episode 4)

This is instalment 4 of a 7 segment article comparing combat casualty care in the Navy of the 19th century with that of the 21st.

My original intent here was to compare and contrast Navy medical care between the 19th and the 21st centuries. However, it soon became clear to me that there really is no comparison, only contrast. So much has changed, at so many levels of endeavor, to have changed Navy medicine almost completely. First is the matter of physical diagnosis – the interpretation of symptoms (what the patient reports) and signs (what the physician observes) to diagnose illness. The system of physical diagnosis began with the 1760 discovery of percussion – the tapping of certain body parts, say the chest, to determine if fluid is where it doesn’t belong. Next came the stethoscope in 1816; this permitted physicians to listen for abnormal sounds in the lungs, the heart and vessels, and the abdomen, and to interpret them. The inventor, Laennec, was also the first to correlate his physical findings with autopsy examinations, thereby beginning a system of thought about disease processes and their diagnosis. The so-called German School of the mid-to-late 19th century added laboratory examinations to the diagnostic set. The ophthalmoscope (1850) permitted physicians to peer into the eye, called the window to the body because many illnesses cause changes that can be seen there. The thermometer was invented in 1871, and all understand the importance of that device. Conrad Roentgen discovered x-rays in 1895, and immediately appreciated their implications for medical diagnosis. Just three years later, American surgeons used the x-ray apparatus extensively for localizing bullets in wounded soldiers during the Spanish-American War.[1] Radiologic diagnosis took a major leap forward with the introduction of CT scanning in the mid-1970s; the technique creates essentially 3-d views of the inside of the body, permitting much more precise diagnosis in most cases.

The role of bacteria in causing wound infections was elucidated by Pasteur and others from about 1861. This work prompted the German army to adopt antibacterial surgical techniques, the effectiveness of which to reduce wound infection rates was proven in the Franco-Prussian War. The bacterial theory of disease was advanced throughout the early 20th century, and the role of viruses in causing such diseases as smallpox, poliomyelitis and yellow fever was worked out the 1920s and 1930s. Public health and preventative medicine – for example the role of immunizations against epidemic diseases – played a huge role in reducing morbidity and mortality in military organizations thereby keeping more soldiers on the battlefield more of the time. Once again, the Germans led the way with mandatory vaccination: in the Franco-Prussian War, the immunized Germans suffered 4835 cases of smallpox with a mortality rate of 0.5%, compared with the unimmunized French POWs who experienced 14,178 cases with a mortality rate of nearly 14%.[2]

The notion of replacing blood lost as a result of wounding and injury gained credibility only after a system of blood typing was worked out by Karl Landsteiner in 1901. While transfusions from one man to another had been tried before (transfusions from animals had been tried, too) – all with disastrous results – it was only after transfusion of matching blood became possible that the procedure could be safely carried out. Transfusion was used during World War I, British surgeons commonly using the man-to-man technique in the early part of the war. The American Army physician Oswald Paterson came up with the idea of banking blood during the war. This played a major role in combat casualty care, but only after technical problems- such as keeping collected blood from clotting, preserving it, and of practical transfusion set-ups – were solved. Transfusion of banked blood became commonplace near the end of the war. The technical and practical approaches to the handling and banking of blood were refined in the inter-war period, so by the outbreak of WW II, mass collection, banking and transport of blood to theaters of war were instituted. Some elements of the German army had their members’ blood type tatooed on them; these men became part of a walking blood bank – men, who as in World War I, could be called upon to give blood on the spot, when needed. Our Navy still uses the walking blood bank concept today, as a supplement to the blood banking system, but without that particular type of tatoo. Finally, the advent of anesthesia permitting major surgical operations without pain came in the 1870s. This single advance permitted a vast refinement in surgical techniques that are applied to this day. Compare the image of the sole ship’s surgeon and his assistants, with no anesthesia, working in a dark cockpit with modern combat casualty care where two or more surgical teams are working on a patient while the anesthetist is responsible not just for administering the anesthesia, but also administering blood and blood products, fluids and a multitude of drugs to support a patient who has been gravely injured.

[1] Gabriel, Richard A. and Karen S. Metz, A History of Military Medicine, Vol II, New York, Greenwood Press, 1992, pp 221, 222.

[2] Gabriel and Metz, op. cit., pp 108, 109.

©2016, 2017 Thomas L Snyder

Post a comment or leave a trackback: Trackback URL.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: